Abstract

We consider two aspects of Kronecker coefficients in the directions of representation theory and combinatorics. We consider a conjecture of Jan Saxl stating that the tensor square of the $S_n$-irreducible representation indexed by the staircase partition contains every irreducible representation of $S_n$. We present a sufficient condition allowing to determine whether an irreducible representation is a constituent of a tensor square and using this result together with some analytic statements on partitions we prove Saxl conjecture for several partition classes. We also use Kronecker coefficients to give a new proof and a generalization of the unimodality of Gaussian ($q$-binomial) coefficients as polynomials in $q$, and extend this to strict unimodality. Nous considérons deux aspects des coefficients de Kronecker dans le domaine de la Théorie des Représentations et le domaine Combinatoire. Nous considérons la conjecture suivante de Jan Saxl: le tenseur au carré de la représentation irréductible du groupe $S_n$ indexée par la partition $S_n (n= \left( \begin{array}{cc} k+1 \\ 2 \end{array} \right))$. Nous présentons une condition suffisante qui permet de déterminer si une représentation irréductible est une constituante d’un tenseur au carré. En utilisant ce résultat avec des résultats analytiques sur les partitions, nous prouvons la conjecture de Saxl pour plusieurs classes de partitions. Nous utilisons aussi les coefficients de Kronecker pour donner une nouvelle preuve et une généralisation de l’unimodalité des coefficients de Gauss ($q$-binomiaux) comme polynômes en $q$ et nous étendons cela à l’unimodalité stricte.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.