Abstract

Markovian systems with multiple interacting subsystems under the influence of a control unit are considered. The state spaces of the subsystems are countably infinite, whereas that of the control unit is finite. A recent infinite level-dependent quasi-birth-and-death model for such systems is extended by facilitating the automatic representation and generation of the nonzero blocks in its underlying infinitesimal generator matrix with sums of Kronecker products. Experiments are performed on systems of stochastic chemical kinetics having two or more countably infinite state space subsystems. Results indicate that, even though more memory is consumed, there are many cases where a matrix-analytic solution coupled with Lyapunov theory yields a faster and more accurate steady-state measure compared to that obtained with simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.