Abstract

Abstract Reactions of 1,13-bis(8-chinolyl)-1,4,7,10,13-pentaoxatridecane (“Cryptand 5”) with HgX2 (X = I, SCN) yield crystals of [(cryptand 5)(HgI2)2] (1) and [(cryptand 5 )2{Hg(SCN)2}4] (2), resp. In both complexes two molecules of HgX2 are bound to one ligand molecule. 1 has symmetry Ci with the oxygen atom O(3 ) of the ether chain on a center of symmetry of the unit cell, each Hg atom is bound to the two I atoms, the N atom of the chinolyl residue, and one oxygen atom, O(1) and O(l)i, resp. of the ligand; neighbouring complex units are connected via iodine bridges thus forming chains. In 2 also two formula units of HgX2 are bound to one ligand molecule, but contrary to 1 the complex is not centrosymmetric. The Hg atoms of the two Hg(SCN)2 groups are co-ordinated differently: both are bound via sulphur atoms to two SCN-groups, one being a terminal SCN group, the other acting as a bridge to the Hg atom of a neighbouring complex unit. The first Hg atom is connected to a chinolyl N atom and too oxygen atoms, the second to a chinolyl N atom and three oxygen atoms. There are two independent complex units per asymmetric unit which are related by a non-crystallographic twofold axis, and which are connected via two SCN bridges. These “double molecules” are also interconnected by thiocyanate bridges, thus forming a chain structure

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call