Abstract

Two intuitionistic paradefinite logics N4C and N4C+ are introduced as Gentzen-type sequent calculi. These logics are regarded as a combination of Nelson’s paraconsistent four-valued logic N4 and Wansing’s basic constructive connexive logic C. The proposed logics are also regarded as intuitionistic variants of Arieli, Avron, and Zamansky’s ideal paraconistent four-valued logic 4CC. The logic N4C has no quasi-explosion axiom that represents a relationship between conflation and paraconsistent negation, but the logic N4C+ has this axiom. The Kripke-completeness and cut-elimination theorems for N4C and N4C+ are proved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.