Abstract
The performance of kriging methods in predicting maximum m-day (m = 1, 7, 14, or 30) rolling averages of atrazine concentrations in 42 site-years of Midwest Corn Belt watersheds under two systematic sampling designs (sampling every 7 or 14 d) was examined. Daily atrazine monitoring data obtained from the Atrazine Ecological Monitoring Program in the Corn Belt region (2009-2014) were used in the evaluation. Both ordinary and universal kriging methods were considered, with the covariate for universal kriging derived from the deterministic Pesticide Root Zone Model (PRZM). For the maximum 1-d rolling averages, prediction did not differ among methods. For rolling averages of longer duration (m > 1), predictions obtained by linear interpolation on a logarithmic scale were better (up to 15% lower for 7-d sampling and 22% lower for 14-d sampling in terms of the relative root mean squared prediction error) than those obtained by linear interpolation on the original linear scale and also less variable. For kriging methods, empirical semivariograms of daily atrazine time series suggest a negligible noise process, supported by replicate analysis of selected field samples; piecewise linear semivariogram models were found to perform best for predicting sampled data. We demonstrate that kriging prediction intervals offer close to nominal coverage for unsampled values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.