Abstract
SummaryAn efficient computational framework is presented for seismic risk assessment within a modeling approach that utilizes stochastic ground motion models to describe the seismic hazard. The framework is based on the use of a kriging surrogate model (metamodel) to provide an approximate relationship between the structural response and the structural and ground motion parameters that are considered as uncertain. The stochastic character of the excitation is addressed by assuming that under the influence of the white noise (used within the ground motion model) the response follows a lognormal distribution. Once the surrogate model is established, a task that involves the formulation of an initial database to inform the metamodel development, it is then directly used for all response evaluations required to estimate seismic risk. The model prediction error stemming from the metamodel is directly incorporated within the seismic risk quantification and assessment, whereas an adaptive approach is developed to refine the database that informs the metamodel development. The ability to efficiently obtain derivative information through the kriging metamodel and its utility for various tasks within the probabilistic seismic risk assessment is also discussed. As an illustrative example, the assessment of seismic risk for a benchmark four‐story concrete office building is presented. The potential that ground motions include near‐fault characteristics is explicitly addressed within the context of this example. The implementation of the framework for the same structure equipped with fluid viscous dampers is also demonstrated. Copyright © 2015 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.