Abstract

Rotating machinery produces vibrations depending upon the design of the rotor systems as well as any faults or uncertainties in the machine that can increase the vibrations of such systems. This study illustrates the effectiveness of using surrogate modeling based on kriging in order to predict the vibrational behavior (i.e., the critical speeds and the vibration amplitudes) of a complex flexible rotor in the presence of uncertainties. The basic idea of kriging is to predict unknown values of a function by using a small size set of known data. The kriging estimation is based on a weighted average of the known values of the function in the neighborhood of the point for which the value of the function has to be calculated. The crucial dependence of a kriging predictor versus the correlation functions and different orders will be illustrated. This paper also shows that reducing the number of samples required to have predictive models can be achieved by performing an initial understanding of the mechanical system of interest and by considering certain characteristics directly deriving from the physics of the problem studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.