Abstract

In this paper, a novel Krein space approach to robust estimation for uncertain systems with accumulated bias is proposed. The bias is impacted by system uncertainties and exists in both state transition and observer matrices. Initial conditions and cross-correlated uncertainty inputs are described by the sum quadratic constraint (SQC). Without modifying the SQC, the minimal state of the SQC is obtained through Krein space method. The inertia condition for a minimum of a deterministic quadratic form is derived when the coefficient of observer uncertainty input is non-unit matrix. Recursions of Krein space state filtering and bias filtering are developed respectively. Since the cross correlation between uncertainties is considered, a cross correlation gain is introduced into the posteriori estimator. Finally, a numerical example illustrates the performance of the proposed filter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call