Abstract
In 1944 M.G. Krein proposed a condition throwing light on the moment problem for absolutely continuous probability distributions. This condition, implying non-uniqueness, is expressed in terms of a normalized logarithmic integral of the density and has different forms in the Hamburger moment problem (for distributions on the whole real line) and in the Stieltjes moment problem (for distributions on the positive real line). Other forms of the Krein condition, together with new conditions (smoothing and growth condition on the density) suggested by G.D. Lin and based on a work by H. Dym and H.P. McKean, led to a unique solution to the moment problem. We present new results, give new proofs of previously known results and discuss related topics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.