Abstract

Krebs cycle enzyme activities and levels of five metabolites were determined from livers of old mice (30 months) maintained either on control or on long-term caloric restriction (CR) diets (28 months). In CR mice, the cycle was divided into two major blocks, the first containing citrate synthase, aconitase and NAD-dependent isocitrate dehydrogenase which showed decreased activities, while the second block, containing the remaining enzymes, displayed increased activity (except for fumarase, which was unchanged). CR also resulted in decreased levels of citrate, glutamate and α-ketoglutarate, increased levels of malate, and unchanged levels of aspartate. The α-ketoglutarate/glutamate and malate/α-ketoglutarate ratios were higher in CR, in parallel with previously reported increases with CR in pyruvate carboxylase activity and glucagon levels, respectively. The results indicate that long-term CR induces a differential regulation of Krebs cycle in old mice and this regulation may be the result of changes in gene expression levels, as well as a complex interplay between enzymes, hormones and other effectors. Truncation of Krebs cycle by CR may be an important adaptation to utilize available substrates for the gluconeogenesis necessary to sustain glycolytic tissues, such as brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.