Abstract

Fluid-filled fractures involving kinks and branches result in complex interactions between Krauklis waves-highly dispersive and attenuating pressure waves within the fracture-and the body waves in the surrounding medium. For studying these interactions, we introduce an efficient 2D time-harmonic elastodynamic boundary element method. Instead of modeling the domain within a fracture as a finite-thickness fluid layer, this method employs zero-thickness, poroelastic Linear-Slip Interfaces to model the low-frequency, local fluid-solid interaction. Using this method, the scattering of Krauklis waves by a single kink along a straight fracture and the radiation of body waves generated by Krauklis waves within complex fracture systems are examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.