Abstract

It was reported that PD-L1 expression was correlated with genetic alterations. Whether PD-L1 was regulated by mutant Kirsten rat sarcoma viral oncogene homolog (KRAS) in non-small-cell lung cancer (NSCLC) and the underlying molecular mechanism were largely unknown. In this study, we investigated the correlation between PD-L1 expression and KRAS mutation and the functional significance of PD-1/PD-L1 blockade in KRAS-mutant lung adenocarcinoma. We found that PD-L1 expression was associated with KRAS mutation both in the human lung adenocarcinoma cell lines and tissues. PD-L1 was up-regulated by KRAS mutation through p-ERK but not p-AKT signaling. We also found that KRAS-mediated up-regulation of PD-L1 induced the apoptosis of CD3-positive T cells which was reversed by anti-PD-1 antibody (Pembrolizumab) or ERK inhibitor. PD-1 blocker or ERK inhibitor could recover the anti-tumor immunity of T cells and decrease the survival rates of KRAS-mutant NSCLC cells in co-culture system in vitro. However, Pembrolizumab combined with ERK inhibitor did not show synergistic effect on killing tumor cells in co-culture system. Our study demonstrated that KRAS mutation could induce PD-L1 expression through p-ERK signaling in lung adenocarcinoma. Blockade of PD-1/PD-L1 pathway may be a promising therapeutic strategy for human KRAS-mutant lung adenocarcinoma.

Highlights

  • Lung cancer remains the leading cause of cancer-related death worldwide [1]

  • Our study demonstrated that Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation could induce PD-L1 expression through p-ERK signaling in lung adenocarcinoma

  • In order to investigate the association between PD-L1 expression and KRAS mutation status, we conducted experiments in human lung adenocarcinoma cell lines and tissue

Read more

Summary

Introduction

Lung cancer remains the leading cause of cancer-related death worldwide [1]. Non-small-cell lung cancer (NSCLC) accounts for approximately 80% of all lung cancers [2]. H292 and H1993 are NSCLC cell lines with EGFR/ALK/KRAS wild-type (WT). Our study prospectively enrolled 216 newly diagnosed NSCLC patients who all underwent genomic analysis of EGFR, ALK and KRAS from April 2013 to December 2014 in Sun Yat-sen University Cancer Center (SYSUCC). The survival rates of KRAS-mutant tumor cells like H358 or EKVX cells were dynamically monitored in real time by the xCELLigence system (E-plate, Roche) which could exclude the interference of suspended DC-CIK. After matching with “MatchIt” package of R programming language, the differences of gender, smoking status, tumor differentiation, staging between KRAS mutation group and EGFR/ALK/KRAS wild-type group were examined by the Pearson Chi-square test and the difference of age between the two groups was examined by two independent samples’ t test. Wilcoxon rank-sum test was used to compare the H-SCORE of PD-L1 staining between KRAS mutation and EGFR/ALK/KRAS wild-type group. The P values between two experimental groups were tested by two-tailed Student’s t test and P values less than 0.05 were considered significant

Results
Discussion
Compliance with ethical standards
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call