Abstract

KRas is a major proto-oncogene product whose signaling activity depends on its level of enrichment on the plasma membrane (PM). This PM localization relies on posttranslational prenylation for membrane affinity, while PM specificity has been attributed to electrostatic interactions between negatively charged phospholipids in the PM and basic amino-acids in the C terminus of KRas. By measuring kinetic parameters of KRas dynamics in living cells with a cellular-automata-based data-fitting approach in realistic cell-geometries, we show that charge-based specificity is not sufficient to generate PM enrichment in light of the total surface area of endomembranes. Instead, mislocalized KRas is continuously sequestered from endomembranes by cytosolic PDEδ to be unloaded in an Arl2-dependent manner to perinuclear membranes. Electrostatic interactions then trap KRas at the recycling endosome (RE), from where vesicular transport restores enrichment on the PM. This energy driven reaction-diffusion cycle explains how small molecule targeting of PDEδ affects the spatial organization of KRas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.