Abstract
ATP binding, acting as a gate, plays an important role in kinesin stepping. To understand the physical mechanism of the ATP gate, we propose a Kramers-type elastic ratchet model in which the free head undergoes a biased diffusive search. By first passage time analysis, we investigate the dependence of the mean dwell time on the load force for forward steps of kinesin and find that the forward dwell time varies exponentially with the backward load force which is consistent with the data of Carter and Cross, Nature 435 (2005) 308. Our work suggests that the gating mechanism triggered by ATP binding involves both Kramers-type elastic ratchet mechanism and power stroke movement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.