Abstract

Let $kq$ denote the very effective cover of Hermitian K-theory. We apply the $kq$-based motivic Adams spectral sequence, or $kq$-resolution, to computational motivic stable homotopy theory. Over base fields of characteristic not two, we prove that the $n$-th stable homotopy group of motivic spheres is detected in the first $n$ lines of the $kq$-resolution, thereby reinterpreting results of Morel and Röndigs-Spitzweck-Østvær in terms of $kq$ and $kq$-cooperations. Over algebraically closed fields of characteristic 0, we compute the ring of $kq$-cooperations modulo $v_1$-torsion, establish a vanishing line of slope $1/5$ in the $E_2$-page, and completely determine the $0$- and $1$-lines of the $kq$-resolution. This gives a full computation of the $v_1$-periodic motivic stable stems and recovers Andrews and Miller’s calculation of the $\eta$-periodic $\mathbb {C}$-motivic stable stems. We also construct a motivic connective $j$ spectrum and identify its homotopy groups with the $v_1$-periodic motivic stable stems. Finally, we propose motivic analogs of Ravenel’s Telescope and Smashing Conjectures and present evidence for both.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.