Abstract

We study the decidability of k-provability in $\hbox {PA}$—the relation ‘being provable in $\hbox {PA}$ with at most k steps’—and the decidability of the proof-skeleton problem—the problem of deciding if a given formula has a proof that has a given skeleton (the list of axioms and rules that were used). The decidability of k-provability for the usual Hilbert-style formalisation of $\hbox {PA}$ is still an open problem, but it is known that the proof-skeleton problem is undecidable for that theory. Using new methods, we present a characterisation of some numbers k for which k-provability is decidable, and we present a characterisation of some proof-skeletons for which one can decide whether a formula has a proof whose skeleton is the considered one. These characterisations are natural and parameterised by unification algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.