Abstract

Abstract The logarithmic derivative of the marginal distributions of randomly fluctuating interfaces in one dimension on a large scale evolve according to the Kadomtsev–Petviashvili (KP) equation. This is derived algebraically from a Fredholm determinant obtained in [MQR17] for the Kardar–Parisi–Zhang (KPZ) fixed point as the limit of the transition probabilities of TASEP, a special solvable model in the KPZ universality class. The Tracy–Widom distributions appear as special self-similar solutions of the KP and Korteweg–de Vries equations. In addition, it is noted that several known exact solutions of the KPZ equation also solve the KP equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.