Abstract
Nonlinear properties of ion-acoustic (IA) shock are studied by incorporating the effects of electron nonextensivity in a warm electronegative plasma, whose constituents are the inertial positive/negative ions and q-distributed electrons. For this purpose, the evolution equations are solved to obtain Kadomtsev-Petviashvili (KP) Burgers equation by using the reductive perturbation technique and its solution by the tanh method. Furthermore, the conditions for the existence of oscillatory and monotonic shocks are discussed. Numerically, it is found that IA shock propagation characteristics are significantly modified by the variation of plasma parameters, such as, the effects of electron nonextensivity, the positive and negative ion-to-electron temperature ratios (θi,θn), respectively. The former also affect the dispersion, dissipation and nonlinearity coefficients of the KPB equation involving the IA shocks. The present analyses could be useful for understanding the nonlinear shock wave excitations in space and laboratory plasmas, where two distinct groups of ions are present.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.