Abstract

In this paper, we introduce the notion of Koszul–Vinberg–Nijenhuis (KVN) structures on a left-symmetric algebroid as analogues of Poisson–Nijenhuis structures on a Lie algebroid, and show that a KVN-structure gives rise to a hierarchy of Koszul–Vinberg structures. We introduce the notions of [Formula: see text]-structures, pseudo-Hessian–Nijenhuis structures and complementary symmetric [Formula: see text]-tensors for Koszul–Vinberg structures on left-symmetric algebroids, which are analogues of [Formula: see text]-structures, symplectic-Nijenhuis structures and complementary [Formula: see text]-forms for Poisson structures. We also study the relationships between these various structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.