Abstract
Resolutions, which generalize the classical Koszul resolutions, are constructed for a large class of augmented algebras including the Steenrod algebra and the universal enveloping algebras. For each such algebra $A$, an explicit differential algebra $\bar K\ast (A)$ is described such that (1) $\bar K^ \ast (A)$ is a small quotient algebra of the cobar complex and (2) the homology of $\bar K^ \ast (A)$ is the cohomology algebra $H ^ \ast (A)$. The resolution of May for restricted Lie algebras in characteristic 2 is retrieved and a simple derivation of the resolution of Kan et al. of the Steenrod algebra is given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.