Abstract
We give a proof of the parabolic/singular Koszul duality for the category O of affine Kac–Moody algebras. The main new tool is a relation between moment graphs and finite codimensional affine Schubert varieties. We apply this duality to q-Schur algebras and to cyclotomic rational double affine Hecke algebras. This yields a proof of a conjecture of Chuang–Miyachi relating the level-rank duality with the Ringel–Koszul duality of cyclotomic rational double affine Hecke algebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.