Abstract
This is a survey paper on commutative Koszul algebras and Castelnuovo-Mumford regularity. Koszul algebras, originally introduced by Priddy, are graded K-algebras R whose residue field K has a linear free resolution as an R-module. The Castelnuovo-Mumford regularity is, after Krull dimension and multiplicity, perhaps the most important invariant of a finitely generated graded module M, as it controls the vanishing of both syzygies and the local cohomology modules of M.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.