Abstract

ABSTRACTThe multiple scattering theory (MST) method of Korringa, and of Kohn and Rostoker for determining the electronic structure of solids, originally developed in connection with potentials bounded by noa-overlapping spheres (Muffin-tin (MT) potentials), is generalized to the case of space-filling potential cells of arbitrary shape through the use of a variational formalism. This generalized version of MST retains the separability of structure and potential characteristic of the application of MST to MT potentials. However, in contrast to the MT case, different forms of MST exhibit different convergence rates for the energy and the wave function. Numerical results are presented which illustrate the differing convergence rates of the variational and nonvariatonal forms of MST for space-filling potentials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.