Abstract

A core collection is a subset that represents genetic diversity of the total collection. Soybean (Glycine max (L.) Merr.) is one of major food and feed crops. It is the world’s most cultivated annual herbaceous legume. Constructing a core collection for soybean could play a pivotal role in conserving and utilizing its genetic variability for research and breeding programs. To construct and evaluate a Korean soybean core collection, genotypic and phenotypic data as well as population structure, were analyzed. The Korean soybean core collection consisted of 430 accessions selected from 2,872 collections based on Affymetrix Axiom® 180k SoyaSNP array data. The core collection represented 99% of genotypic diversity of the total collection. Analysis of population structure clustered the core collection into five subpopulations. Accessions from South Korea and North Korea were distributed across five subpopulations. Analysis of molecular variance indicated that only 2.01% of genetic variation could be explained by geographic origins while 16.18% of genetic variation was accounted for by subpopulations. Genome-wide association study (GWAS) for days to flowering, flower color, pubescent color, and growth habit confirmed that the core collection had the same genetic diversity for tested traits as the total collection. The Korean soybean core collection was constructed based on genotypic information of the 180k SNP data. Size and phenotypic diversity of the core collection accounted for approximately 14.9% and 18.1% of the total collection, respectively. GWAS of core and total collections successfully confirmed loci associated with tested traits. Consequently, the present study showed that the Korean soybean core collection could provide fundamental and practical material and information for both soybean genetic research and breeding programs.

Highlights

  • Genetic diversity is fundamental in crop breeding and research programs

  • Quantitative trait loci (QTL) associated with days to flowering genes E1, E2, and E3 were positioned on the same chromosomes in both core and total collections (Fig 8)

  • A Korean soybean core collection was constructed based on SNP information from the Axiom1 180k SoyaSNP array

Read more

Summary

Introduction

Genetic diversity is fundamental in crop breeding and research programs. Monoculture of a few improved cultivars has decreased the genetic diversity across crop species [1]. One of important ways to achieve successful crop improvement is through continuous supply of genetic diversity, including new or improved variability in target traits [2]. Managing and utilizing large and diverse germplasm collection are important and valuable challenges for successful biological research and crop improvement programs. Germplasm conservation centers have been established to preserve genetic diversity of target crop species. Large numbers of collections are desirable to preserve genetic variability, their usefulness and accessibility might be inversely related to their size [3]. To overcome the size issue, core collections have been constructed for important crop species.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call