Abstract

BackgroundPanax ginseng Meyer, known as Korean Red Ginseng (KRG), is one of the important age-old traditional herbs used in boosting libido and improving male fertility. In this study, the effects of Rg3-enriched KRG extract (KGC04P) on heat stress–induced testicular damage in experimental rats was evaluated. MethodsMale rats (Sprague-Dawley) were divided into four groups (n = 10): normal control (NC), heat-stressed control (HC), heat-stressed plus KGC04P-100 mg/kg (HK100), and heat-stressed plus KGC04P-200 mg/kg (HK200) groups. Starting 1 week prior to heat stress, animals were administered orally with KGC04P (100 and 200 mg/kg) mixed with a regular pellet diet and continued for 25 weeks. Heat stress was induced to HC, HK100, and HK200 groups by intermittently exposing the animals to high temperatures (32 ± 1°C, 2 h/day). After 6 months, animals were euthanized under general anesthesia with carbon dioxide and evaluated for various parameters in serum and testicular tissue by using Western blotting, biochemical kits, and reverse transcription-polymerase chain reaction. ResultsSignificant (p < 0.05) alterations in several parameters, such as body/organ weight, sperm kinematics, and lipid metabolism marker levels, in the serum and testis of rats were observed. Further, the expression of testicular antioxidant enzymes, inflammatory cytokines, sex hormonal receptors, and spermatogenesis-related genes were also affected significantly (p < 0.05) in the heat-stressed group. However, KGC04P prevented the heat stress–induced changes in rats significantly (p < 0.05) at both concentrations. ConclusionKGC04P attenuated heat stress–induced testicular damage by a multifunctional approach and can be developed as an excellent therapeutic agent for hyperthermia-mediated male infertility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.