Abstract

ObjectivesAnaphora recognition is a process to identify exactly which noun has been used previously and relates to a pronoun that is included in a specific sentence later. Therefore, anaphora recognition is an essential element of a dialogue agent system. In the current study, all the merits of rule-based, machine learning-based, semantic-based anaphora recognition systems were combined to design and realize a new hybrid-type anaphora recognition system with an optimum capacity.MethodsAnaphora recognition rules were encoded on the basis of the internal traits of referred expressions and adjacent contexts to realize a rule-based system and to serve as a baseline. A semantic database, related to predicate instances of sentences including referred expressions, was constructed to identify semantic co-relationships between the referent candidates (to which semantic tags were attached) and the semantic information of predicates. This approach would upgrade the anaphora recognition system by reducing the number of referent candidates. Additionally, to realize a machine learning-based system, an anaphora recognition model was developed on the basis of training data, which indicated referred expressions and referents. The three methods were further combined to develop a new single hybrid-based anaphora recognition system.ResultsThe precision rate of the rule-based systems was 54.9%. However, the precision rate of the hybrid-based system was 63.7%, proving it to be the most efficient method.ConclusionsThe hybrid-based method, developed by the combination of rule-based and machine learning-based methods, represents a new system with enhanced functional capabilities as compared to other pre-existing individual methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.