Abstract

Decellularized extracellular matrix (dECM) has been extensively employed as tissue engineering scaffolds because its components can greatly enhance the migration and proliferation of cultivating cells. In this study, we decellularized Korean amberjack skin and incorporated soluble fractions in hyaluronic acid hydrogels with 3D-printed tissue engineering hydrogels to overcome any limitation of animal-derived dECM. The hydrolyzed fish-dECM was mixed with methacrylated hyaluronic acid and chemically crosslinked to 3D-printed fish-dECM hydrogels, where fish-dECM contents affected both printability and injectability of the hydrogels. Swelling ratios and mass erosion of the 3D-printed hydrogels were dependent on fish-dECM contents, where higher fish-dECM in the hydrogel increased swelling ratios and mass erosion rates. The higher content of fish-dECM considerably enhanced the viability of the incorporated cells in the matrix for 7 days. Artificial human skin was constructed by seeding human dermal fibroblasts and keratinocytes in the 3D-printed hydrogels, and a formation of a bilayered skin was visualized with tissue staining. Thus, we envision that 3D-printed hydrogels containing fish-dECM can be an alternative bioink composed of a non-mammal-derived matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call