Abstract
Since the classic work of Roothaan [Rev. Mod. Phys. 32, 179 (1960)], the one-electron energies of a ROHF method are known as ambiguous quantities having no physical meaning. Together with this, it is often assumed in present-day computational studies that Koopmans' theorem is valid in a ROHF method. In this work we analyze the specific dependence of orbital energies on the choice of the basic equations in a ROHF method which are the Euler equations and different forms of the generalized Hartree-Fock equation. We first prove that the one-electron open-shell energies epsilon(m) derived by the Euler equations can be related to the respective ionization potentials I(m) via the modified Koopmans' formula I(m)= -epsilon(m)f(m) where f(m) is an occupation number. As compared to this, neither the closed-shell orbital energies nor the virtual ones derived by the Euler equations can be related to the respective ionization potentials and electron affinities via Koopmans' theorem. Based on this analysis, we derive the new (canonical) form for the Hamiltonian of the Hartree-Fock equation, the eigenvalues of which obey Koopmans' theorem for the whole energy spectrum. A discussion of new orbital energies is presented on the examples of a free N atom and an endohedral N@C(60) (I(h)). The vertical ionization potentials and electron affinities estimated via Koopmans' theorem are compared with the respective observed data and, for completeness, with the respective estimates derived via a DeltaSCF method. The agreement between observed data and their estimates via Koopmans' theorem is qualitative and, in general, appears to possess the same accuracy level as in the closed-shell SCF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.