Abstract
Nonlinearity presents a significant challenge in developing quantum algorithms involving differential equations, prompting the exploration of various linearization techniques, including the well-known Carleman Linearization. Instead, this paper introduces the Koopman Spectral Linearization method tailored for nonlinear autonomous ordinary differential equations. This innovative linearization approach harnesses the interpolation methods and the Koopman Operator Theory to yield a lifted linear system. It promises to serve as an alternative approach that can be employed in scenarios where Carleman Linearization is traditionally applied. Numerical experiments demonstrate the effectiveness of this linearization approach for several commonly used nonlinear ordinary differential equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.