Abstract
Every invertible, measure-preserving dynamical system induces a Koopman operator, which is a linear, unitary evolution operator acting on the $L^2$ space of observables associated with the invariant measure. Koopman eigenfunctions represent the quasiperiodic, or non-mixing, component of the dynamics. The extraction of these eigenfunctions and their associated eigenfrequencies from a given time series is a non-trivial problem when the underlying system has a dense point spectrum, or a continuous spectrum behaving similarly to noise. This paper describes methods for identifying Koopman eigenfrequencies and eigenfunctions from a discretely sampled time series generated by such a system with unknown dynamics. Our main result gives necessary and sufficient conditions for a Fourier function, defined on $N$ states sampled along an orbit of the dynamics, to be extensible to a Koopman eigenfunction on the whole state space, lying in a reproducing kernel Hilbert space (RKHS). In particular, we show that such an extension exists if and only if the RKHS norm of the Fourier function does not diverge as $ N \to \infty $, in which case the corresponding Fourier frequency is also a Koopman eigenfrequency. If such an RKHS extension does not exist, we can still construct an $L^2$ approximation of the eigenfunction. Numerical experiments on mixed-spectrum systems with weak periodic components demonstrate that this approach has significantly higher skill in identifying Koopman eigenfrequencies compared to conventional spectral estimation techniques based on the discrete Fourier transform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.