Abstract

We consider the flow of Burgers' equation on an open set of (small) functions in $L^2([0,1])$. We derive explicitly the Koopman decomposition of the Burgers' flow. We identify the frequencies and the coefficients of this decomposition as eigenvalues and eigenfunctionals of the Koopman operator. We prove the convergence of the Koopman decomposition for $t>0$ for small Cauchy data, and up to $t=0$ for regular Cauchy data. The convergence up to $t=0$} leads to a `completeness' property for the basis of Koopman modes. We construct all modes and eigenfunctionals, including the eigenspaces involved in geometric multiplicity. This goes beyond the summation formulas provided by (Page & Kerswell, 2018), where only one term per eigenvalue was given. A numeric illustration of the Koopman decomposition is given and the Koopman eigenvalues compared to the eigenvalues of a Dynamic Mode Decomposition (DMD).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.