Abstract

Koopman operator theory has been successfully applied to problems from various research areas such as fluid dynamics, molecular dynamics, climate science, engineering, and biology. Applications include detecting metastable or coherent sets, coarse-graining, system identification, and control. There is an intricate connection between dynamical systems driven by stochastic differential equations and quantum mechanics. In this paper, we compare the ground-state transformation and Nelson’s stochastic mechanics and demonstrate how data-driven methods developed for the approximation of the Koopman operator can be used to analyze quantum physics problems. Moreover, we exploit the relationship between Schrödinger operators and stochastic control problems to show that modern data-driven methods for stochastic control can be used to solve the stationary or imaginary-time Schrödinger equation. Our findings open up a new avenue toward solving Schrödinger’s equation using recently developed tools from data science.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.