Abstract

This study focuses on the constitutive modelling of finite deformation in the commercially obtained butter (composition is 83 % of milk fat) at the temperature 17–20 °C. The specimens from the butter (height L0=14.6 mm and diameter 20 mm) have been compressed between two parallel metal plates at a fixed crosshead speed 20 mm/min using of the testing device TIRA TEST. The force F and the deformation ∆L are measured during compression and both quantities are recorded. The experimental records force F – displacement (deformation) were obtained. These records have been transformed into stress–strain dependences and into true stress–true strain. The basic data on the strain behaviour of a butter under low strain rates have been obtained. Experimental results show that the behaviour of butter can be described by a hyperelastic material model. In this model, the quasi–static response is defined by compressible hyperelasticity, whereby the strain energy potential is assumed to be representable by a newly proposed polynomial series with three independent parameters. The material parameters in the constitutive model are determined from compression test. A comparison of predictions based on the proposed constitutive equation with experiments shows that the model is able to describe the strain behaviour of the butter examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.