Abstract

The MnXTm1‒XSe (0 ≤ Х ≤ 0.2) solid solutions have been first synthesized and their structural, magnetic, and transport properties have been studied in the temperature range of 80–1000 K and magnetic fields of up to 12 kOe. The surface morphology of the samples has been examined and the chemical analysis has been carried out. It is shown that the valence change with the increasing substitution concentration is accompanied by a change in the lattice parameter and a decrease in the magnetic moment of the samples. The Kondo temperatures caused by the manganese and thulium subsystem have been found in the low- and room-temperature regions. The temperature of localization of small-radius polarons has been determined. A drastic decrease in the relaxation time in the range of the manganese ion percolation through the lattice in the MnXTm1‒XSe system has been established. The change of the current carrier type upon variation in the temperature and substitution concentration was determined from the Seebeck coefficient. A high-temperature extremum of thermopower was revealed, which is explained within the framework of the Anderson model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.