Abstract

Non-equilibrium Green's function technique has been used to calculate spin-dependent electronic transport through a quantum dot in the Kondo regime. The dot is described by the Anderson Hamiltonian and is coupled either symmetrically or asymmetrically to ferromagnetic leads, whose magnetic moments are noncollinear. It is shown that the splitting of the zero bias Kondo anomaly in differential conductance decreases monotonically with increasing angle between magnetizations, and for antiparallel configuration it vanishes in the symmetrical case while remains finite in the asymmetrical one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call