Abstract
We consider a doubly stochastic Markov chain, where the transition intensities are modelled as diffusion processes. Here we present a forward partial integro-differential equation (PIDE) for the transition probabilities. This is a generalisation of Kolmogorov’s forward differential equation. In this set-up, we define forward transition rates, generalising the concept of forward rates, e.g. the forward mortality rate. These models are applicable in e.g. life insurance mathematics, which is treated in the paper. The results presented follow from the general forward PIDE for stochastic processes, of which the Fokker–Planck differential equation and Kolmogorov’s forward differential equation are the two most known special cases. We end the paper by considering the semi-Markov case, which can also be considered a special case of a general forward partial integro-differential equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.