Abstract
Identification of programs for computable functions from their graphs by algorithmic devices is a well studied problem in learning theory. Freivalds and Chen consider identification of ‘minimal’ and ‘nearly minimal’ programs for functions from their graphs. To address certain problems in minimal identification for Godel numberings, Freivalds later considered minimal identification in Kolmogorov Numberings. Kolmogorov numberings are in some sense optimal numberings and have some nice properties. We prove certain hierarchy results for minimal identification in every Kolmogorov numbering. In addition we also compare minimal identification in Godel numbering versus minimal identification in Kolmogorov numberings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.