Abstract
We clarify the role of Kolmogorov complexity in the area of randomness extraction. We show that a computable function is an almost randomness extractor if and only if it is a Kolmogorov complexity extractor, thus establishing a fundamental equivalence between two forms of extraction studied in the literature: Kolmogorov extraction and randomness extraction. We present a distribution Mk based on Kolmogorov complexity that is complete for randomness extraction in the sense that a computable function is an almost randomness extractor if and only if it extracts randomness from Mk .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.