Abstract

AbstractGraphite is one of the most promising anode materials for potassium-ion batteries (PIBs) due to its low cost and stable discharge plateau. However, its poor rate performance still needs to be improved. A novel graphitic anode was designed from commercial mesocarbon microbeads (MCMBs) by KOH treatment. Using limited oxidation and slight intercalation, the interlayer spacing of graphitic layers on the surface of the MCMBs was increased, causing the K+ diffusion rate to be significantly improved. When this modified material was combined with carboxymethyl cellulose as a binder (79.2%) and used as a PIB anode, it had a high plateau capacity below 0.25 V (271 mAh g−1), superior rate capability (160 mAh g−1 at 1.0 A g−1), excellent cycling stability (about 184 mAh g−1 after 100 cycles at 0.1 A g−1), and a high initial coulombic efficiency. This work provides a simple strategy to prepare graphitic materials with an excellent potassium storage performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.