Abstract
Various flow regimes including Knudsen, transition, slip and viscous flows (Darcy’s law), as applied to flow of natural gas through porous conventional rocks, tight formations and shale systems, are investigated. Data from the Mesaverde formation in the United States are used to demonstrate that the permeability correction factors range generally between 1 and 10. However, there are instances where the corrections can be between 10 and 100 for gas flow with high Knudsen number in the transition flow regime, and especially in the Knudsen’s flow regime. The results are of practical interest as gas permeability in porous media can be more complex than that of liquid. The gas permeability is influenced by slippage of gas, which is a pressure-dependent parameter, commonly referred to as Klinkenberg’s effect. This phenomenon plays a substantial role in gas flow through porous media, especially in unconventional reservoirs with low permeability, such as tight sands, coal seams, and shale formations. A higher-order permeability correlation for gas flow called Knudsen’s permeability is studied. As opposed to Klinkenberg’s correlation, which is a first-order equation, Knudsen’s correlation is a second-order approximation. Even higher-order equations can be derived based on the concept used in developing this model. A plot of permeability correction factor versus Knudsen number gives a typecurve. This typecurve can be used to generalize the permeability correction in tight porous media. We conclude that Knudsen’s permeability correlation is more accurate than Klinkenberg’s model especially for extremely tight porous media with transition and free molecular flow regimes. The results from this study indicate that Klinkenberg’s model and various extensions developed throughout the past years underestimate the permeability correction especially for the case of fluid flow with the high Knudsen number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.