Abstract

Millions of measurements are performed each year by liquid based analytical atomic spectrometry to support healthcare, diagnostic tests, environmental monitoring, material assay, product development and safety. Despite the effort to develop absolute methods, most methods still depend on calibration solutions, which are gravimetric mixtures of high purity solvents and high purity (source material) metals or compounds. As in the real world ideal purity does not exist, the impurity of the solvent and the purity of the source material needs to be known. The impurity of a solvent with respect to one analyte can be measured rather easily and with low limits of determination. In contrast the measurement of the purity of the source material, i.e., the mass fraction of the main constituent in a high purity metal, is more difficult to determine. It becomes even more difficult when the source material is not a pure metal but a compound since problems regarding stoichiometry arise additionally. Although the major producers of calibration solutions make a special effort to determine the purity of the source material, the actual purity statement is often incomplete or not demonstrated. The main reason for this situation is the complexity and high effort necessary to fully characterize such a material. This problem holds to a very wide extent also for the primary standards for element determination at the National Metrology Institutes and Designated Institutes (NMIs and DIs). It is the task of the NMIs and DIs to realise and disseminate primary standards for providing traceability to the International System of Units (SI). The primary elemental standards at the NMIs should provide the link to secondary standards produced by commercial producers and other independently prepared standards for element determination. Without such primary standards, elemental calibration solutions may vary and, depending on the uncertainty required, comparability of measurement in time and space results cannot be achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.