Abstract
Classical fuzzy system modeling methods consider only the current scene where the training data are assumed to be fully collectable. However, if the data available from the current scene are insufficient, the fuzzy systems trained by using the incomplete datasets will suffer from weak generalization capability for the prediction in the scene. In order to overcome this problem, a knowledge-leverage-based fuzzy system (KL-FS) is studied in this paper from the perspective of transfer learning. The KL-FS intends to not only make full use of the data from the current scene in the learning procedure, but also effectively leverage the existing knowledge from the reference scenes. Specifically, a knowledge-leverage-based Takagi-Sugeno-Kang-type Fuzzy System (KL-TSK-FS) is proposed by integrating the corresponding knowledge-leverage mechanism. The new fuzzy system modeling technique is evaluated through experiments on synthetic and real-world datasets. The results demonstrate that KL-TSK-FS has better performance and adaptability than the traditional fuzzy modeling methods in scenes with insufficient data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.