Abstract

BackgroundRapid advancement of next generation sequencing technologies such as whole genome sequencing (WGS) has facilitated the search for genetic factors that influence disease risk in the field of human genetics. To identify rare variants associated with human diseases or traits, an efficient genome-wide binning approach is needed. In this study we developed a novel biological knowledge-based binning approach for rare-variant association analysis and then applied the approach to structural neuroimaging endophenotypes related to late-onset Alzheimer’s disease (LOAD).MethodsFor rare-variant analysis, we used the knowledge-driven binning approach implemented in Bin-KAT, an automated tool, that provides 1) binning/collapsing methods for multi-level variant aggregation with a flexible, biologically informed binning strategy and 2) an option of performing unified collapsing and statistical rare variant analyses in one tool. A total of 750 non-Hispanic Caucasian participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort who had both WGS data and magnetic resonance imaging (MRI) scans were used in this study. Mean bilateral cortical thickness of the entorhinal cortex extracted from MRI scans was used as an AD-related neuroimaging endophenotype. SKAT was used for a genome-wide gene- and region-based association analysis of rare variants (MAF (minor allele frequency) < 0.05) and potential confounding factors (age, gender, years of education, intracranial volume (ICV) and MRI field strength) for entorhinal cortex thickness were used as covariates. Significant associations were determined using FDR adjustment for multiple comparisons.ResultsOur knowledge-driven binning approach identified 16 functional exonic rare variants in FANCC significantly associated with entorhinal cortex thickness (FDR-corrected p-value < 0.05). In addition, the approach identified 7 evolutionary conserved regions, which were mapped to FAF1, RFX7, LYPLAL1 and GOLGA3, significantly associated with entorhinal cortex thickness (FDR-corrected p-value < 0.05). In further analysis, the functional exonic rare variants in FANCC were also significantly associated with hippocampal volume and cerebrospinal fluid (CSF) Aβ1–42 (p-value < 0.05).ConclusionsOur novel binning approach identified rare variants in FANCC as well as 7 evolutionary conserved regions significantly associated with a LOAD-related neuroimaging endophenotype. FANCC (fanconi anemia complementation group C) has been shown to modulate TLR and p38 MAPK-dependent expression of IL-1β in macrophages. Our results warrant further investigation in a larger independent cohort and demonstrate that the biological knowledge-driven binning approach is a powerful strategy to identify rare variants associated with AD and other complex disease.

Highlights

  • Rapid advancement of generation sequencing technologies such as whole genome sequencing (WGS) has facilitated the search for genetic factors that influence disease risk in the field of human genetics

  • Genome-wide gene-based association analysis of functional exonic rare variants with late-onset Alzheimer’s disease (LOAD)-related neuroimaging endophenotype In order to remove spurious association in disease studies due to population stratification, a total of 750 non-Hispanic Caucasian Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants who had both WGS data and MRI scans were used in this study [29]

  • A dispersion-based approach (SKAT) identified a gene, FANCC, which consisted of 16 functional exonic rare variants, achieved a genome-wide significant association with entorhinal cortex thickness (p-value < 2 x 10−6; FDR-corrected p-value < 0.05) (Fig. 2)

Read more

Summary

Introduction

Rapid advancement of generation sequencing technologies such as whole genome sequencing (WGS) has facilitated the search for genetic factors that influence disease risk in the field of human genetics. To identify rare variants associated with human diseases or traits, an efficient genome-wide binning approach is needed. In this study we developed a novel biological knowledge-based binning approach for rare-variant association analysis and applied the approach to structural neuroimaging endophenotypes related to late-onset Alzheimer’s disease (LOAD). Rapid advances in next-generation sequencing technologies and bioinformatics tools over the past decade have made an important contribution to searching for disease susceptibility factors and understanding the impact of the genetic variation on human diseases [1, 2]. Genetic association studies have used next-generation sequencing technologies to identify functional risk rare variants with moderate to large effects on LOAD risk within TREM2, ABCA7, UNC5C, AKAP9 and PLD3 genes [12,13,14]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call