Abstract
In this paper, we report on a multi-year collaboration among computer scientists, toxicologists, chemists, and a statistician, in which the RL induction program was used to assist toxicologists in analyzing relationships among various features of chemical compounds and their carcinogenicity in rodents. Our investigation demonstrated the utility of knowledge-based rule induction in the problem of predicting rodent carcinogenicity and the place of rule induction in the overall process of discovery. Flexibility of the program in accepting different definitions of background knowledge and preferences was considered essential in this exploratory effort. This investigation has made significant contributions not only to predicting carcinogenicity and non-carcinogenicity in rodents, but to understanding how to extend a rule induction program into an exploratory data analysis tool.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.