Abstract

Our goal is to propose a methodology to integrate clinical, cognitive, genetic and neuroimaging results, a disparate assembly of categorical, ordinal, and numerical data, within the context of Alzheimer's disease (AD) research. We describe a knowledge-based, explicit decision model for the discrimination of AD subjects from normal controls (CTRL) based on a recent approach for diagnostic criteria for AD. We proceed by (a) creating a set of rules for each datum source; (b) integrating these disparate data into an information feature in the form of a binary string; and (c) using a machine learning approach based on the Hamming distance as an information similarity measure for the discrimination of probable AD from CTRL. When tested on 249 subjects from the multi-centric Alzheimer's Disease Neuroimaging Initiative study, we reach up to 99.8% discriminative accuracy using a 9-bit information string in a series of 10-fold validation experiments. We expect this versatile approach to become useful in the identification of specific and sensitive phenotypes from large amounts of disparate data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.