Abstract
Formal concept analysis (FCA) is a mathematical framework for data analysis and processing tasks. Based on the lattice and order theory, FCA derives the conceptual hierarchies from the relational information systems. From the crisp setting, FCA has been extended to fuzzy environment. This extension is aimed at handling the uncertain and vague information represented in the form of a formal context whose entries are the degrees from the scale [0, 1]. The present study analyzes the fuzziness in a given many-valued context which is transformed into a fuzzy formal context, to provide an insight into generating the fuzzy formal concepts from the fuzzy formal context. Furthermore, considering that a major problem in FCA with fuzzy setting is to reduce the number of fuzzy formal concepts thereby simplifying the corresponding fuzzy concept lattice structure, the current paper solves the problem by linking an interval-valued fuzzy graph to the fuzzy concept lattice. For this purpose, we propose an algorithm for generating the interval-valued fuzzy formal concepts. To measure the weight of fuzzy formal concepts, an algorithm is proposed using Shannon entropy. The knowledge represented by formal concepts using interval-valued fuzzy graph is compared with entropy-based-weighted fuzzy concepts at chosen threshold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.