Abstract

This correspondence presents a high-level fuzzy Petri net (HLFPN) model to represent the fuzzy production rules of a knowledge-based system, where a fuzzy production rule is the one that describes the fuzzy relation between the antecedent and the consequent. The HLFPN can be used to model fuzzy IF-THEN rules and IF-THEN-ELSE rules, where the fuzzy truth values of the propositions are restricted to [0, 1]. Based on the HLFPN model, an efficient algorithm is proposed to automatically reason about imprecise and fuzzy information. In this correspondence, a novel model to represent fuzzy knowledge is developed. When compared with other related models, the HLFPN model preserves several significant advantages. Finally, main results are presented in the form of eight properties and are supported by a comparison with other existing algorithms

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call