Abstract

In this article knowledge modelling at the knowledge level for the task of moving objects detection in image sequences is introduced. Three items have been the focus of the approach: (1) the convenience of knowledge modelling of tasks and methods in terms of a library of reusable components and in advance to the phase of operationalization of the primitive inferences; (2) the potential utility of looking for inspiration in biology; (3) the convenience of using these biologically inspired problem-solving methods (PSMs) to solve motion detection tasks. After studying a summary of the methods used to solve the motion detection task, the moving targets in indefinite sequences of images detection task is approached by means of the algorithmic lateral inhibition (ALI) PSM. The task is decomposed in four subtasks: (a) thresholded segmentation; (b) motion detection; (c) silhouettes parts obtaining; and (d) moving objects silhouettes fusion. For each one of these subtasks, first, the inferential scheme is obtained and then each one of the inferences is operationalized. Finally, some experimental results are presented along with comments on the potential value of our approach. q 2004 Published by Elsevier Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.