Abstract
Data-driven business models imply the inter-organisational exchange of data or similar value objects. Data science methods enable organisations to discover patterns and eventually knowledge from data. Further, by training machine learning models, knowledge is materialised in those models. Thus, organisations might risk the exposure of competitive knowledge by sharing data-related value objects, such as data, models or predictions. Although knowledge risks have been studied in traditional business models, little research has been conducted in the direction of data-driven business models. In this explorative qualitative study, we conducted 28 expert interviews in three rounds (two exploratory and one evaluatory) and identified five types of risks along the three basic types of value objects: data, models and predictions. These risks depend on the context, i.e., when competitive knowledge could be discovered from shared value objects. We found that those risks can be mitigated by technology, contractual regulations, trusted relationships, and adjusting the business model design. In this study, we show that the risk of knowledge leakage is a relevant risk factor in data-driven business models. Overall, knowledge risks should be considered already during business model design, and their management requires an interdisciplinary approach via a balanced assessment. The level of knowledge protection from a technology perspective highly depends on computer science innovations and thus is a moving target. As an outlook, we suggest that knowledge risk will become even more relevant with the extensive usage of machine learning and artificial intelligence in data-driven business models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.