Abstract

Knowledge graphs (KGs) often contain various errors. Previous works on detecting errors in KGs mainly rely on triplet embedding from graph structure. We conduct an empirical study and find that these works struggle to discriminate noise from semantically-similar correct triplets. In this paper, we propose a KG error detection model CCA to integrate both textual and graph structural information from triplet reconstruction for better distinguishing semantics. We design interactive contrastive learning to capture the differences between textual and structural patterns. Furthermore, we construct realistic datasets with semantically-similar noise and adversarial noise. Experimental results demonstrate that CCA outperforms state-of-the-art baselines, especially on semantically-similar noise and adversarial noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.